Impact of essential workers in the context of social distancing for epidemic control

The following notebook contains all code and scripts necessary to reproduce the results and figures from the main paper. In addition, there are explanations of the methods and supplementary figures to support the main text. Cells should be run sequentially.

```
# Libraries
# The code was initially inspired by the following sources:
# https://www.kaggle.com/pstarszyk/seir-model-with-extensions/
# https://www.kaggle.com/anjum48/seir-hcd-model/data#SEIR-HCD-Model
# http://gabgoh.github.io/COVID/index.html
# https://neherlab.org/covid19/about

import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import os
from scipy.integrate import solve_ivp
from scipy.optimize import minimize
from sklearn.metrics import mean_squared_log_error, mean_squared_error
from collections import namedtuple
from collections import defaultdict as ddict
from copy import deepcopy
import warnings
from datetime import datetime, timedelta
warnings.filterwarnings("ignore")
import seaborn as sns
import matplotlib.pylab as plt
from seaborn import heatmap
from pyDOE import *
```

```
# This is a function used to control the font size in generating the figures
def update_font_size(font_size = 30, rcParams = mpl.rcParams):
```
We consider three separate SEIR models of essential workers: public-facing, non-public-facing, and healthcare workers. For simplicity, in the code these are referred to as ‘Cashier’, ‘USPS’, and ‘Healthcare’ models, respectively. Moreover, the ‘No Structure’ model refers to a model where there are no essential workers. This code block defines the names of these models.

The following code block contains the differential equations used in our compartmentalized SEIR model. We model the dynamics of the epidemic by considering different classes (shown below) and these equations describe the rate of movement between classes as a function of time. Following recent work, we expand on a standard SEIR epidemiological framework, by including additional compartments for infectious individuals and a hospitalized class that contains additional compartments for individuals requiring critical care.

Here, ‘S’ is susceptible, ‘E’ is exposed, ‘I’ is infected, ‘H’ is hospitalized, ‘D’ is dead, and ‘R’ is recovered. Within the infected class, individuals can be asymptomatic ‘I_A’ and destined to recover; symptomatic ‘I_R’ but destined to recover; or symptomatic ‘I_H’ and destined to be hospitalized. Within the hospital, individuals either go to recovery ‘H_R’ or go to critical care ‘H_C’. For those in critical care, individuals either die ‘C_D’ or go on to the recovered class ‘C_R’, with an additional time
spent in the hospital ‘L’. Above each compartment in blue are time parameters \(\tau \) that describe how long individuals spend in each. Above arrows in red are parameters \(P \) that describe the probability an individual moves to a different class.

[25]:

```python
# Susceptible equation
def dS_dt(y_i, p, N_i, I, Beta_t, H, Beta_hosp, groupID):
    if groupID == 1 and p.model == 'Healthcare_Sigmoid':
        return - y_i.S * (sum(Beta_t * I) * (1./N_i) + Beta_hosp)
    else:
        return -(1./N_i) * y_i.S * ( sum(Beta_t * I) + Beta_hosp * H)

# Exposed equation
def dE_dt(y_i, p, N_i, I, Beta_t, H, Beta_hosp, groupID):
    if groupID == 1 and p.model == 'Healthcare_Sigmoid':
        incoming = y_i.S * (sum(Beta_t * I) * (1./N_i) + Beta_hosp)
    else:
        incoming = (1./N_i) * y_i.S * ( sum(Beta_t * I) + Beta_hosp * H )
    return incoming - (y_i.E / p.t_inc)

# Infected, asymptomatic, and will recover equation
def dIA_dt(y_i, p, groupID):
    if groupID == 1:
        p_IA = p.p_IA * p.change_in_p_IA
    else:
        p_IA = p.p_IA
    return (y_i.E / p.t_inc) * p_IA - y_i.IA / p.t_AR

# Infected, symptomatic, and will recover equation
def dIR_dt(y_i, p, groupID):
    if groupID == 1:
        p_IA = p.p_IA * p.change_in_p_IA
        p_IH = p.p_IH * p.change_in_p_IH
    else:
        p_IA = p.p_IA
        p_IH = p.p_IH
    return (y_i.E / p.t_inc)*(1-p_IA)*(1-p_IH) - y_i.IR / p.t_IR

# Infected and will require hospitalization equation
def dIH_dt(y_i, p, groupID):
    if groupID == 1:
        p_IA = p.p_IA*p.change_in_p_IA
        p_IH = p.p_IH*p.change_in_p_IH
    else:
        p_IA = p.p_IA
        p_IH = p.p_IH
    return (y_i.E / p.t_inc)*(1-p_IA)*p_IH - y_i.IH / p.t_IH

# Recovered equation
```
def dR_dt(y_i, p, groupID):
 return y_i.IR / p.t_IR + y_i.IA / p.t_AR + y_i.HR / p.t_HR + y_i.L / p.t_LR

Hospitalized and will recover equation
def dHR_dt(y_i, p, groupID):
 return y_i.IH / p.t_IH * (1 - p.p_HC) - y_i.HR / p.t_HR

Hospitalized and will require critical care equation
def dHC_dt(y_i, p, groupID):
 return y_i.IH / p.t_IH * p.p_HC - y_i.HC / p.t_HC

Critical care and will recover equation
def dCR_dt(y_i, p, groupID):
 return y_i.HC / p.t_HC * (1 - p.p_CD) - (y_i.CR / p.t_CL)

Critical care and will die equation
def dCD_dt(y_i, p, groupID):
 return y_i.HC / p.t_HC * p.p_CD - y_i.CD / p.t_CD

Post-Critical care but still hospitalized equation
def dL_dt(y_i, p, groupID):
 return y_i.CR / p.t_CL - y_i.L / p.t_LR

Dead equation
def dD_dt(y_i, p, groupID):
 return y_i.CD / p.t_CD

parameters = namedtuple('parameters',
 "R_0","N","C",
 "social_distancing_time","theta","model","proportion_essential","rho",
 "max_days","num_groups","compartment_names",
 "t_inc","t_AR","t_IR","t_IH","t_HR","t_HC","t_CD","t_CL","t_LR",
 "p_IA","p_IH","p_HC","p_CD",
 "change_in_p_IH","change_in_p_IA","adjust_beta_hosp")

compartments = namedtuple("compartments",compartment_names)
This function returns an array of differential equations that is used for the ODE solver in the following section

```python
def SEIR_HCD_model(t, y_vals, parameters):

    # Convert to matrix
    # Each row is a group
    # Each column corresponds to a given class within each group
    # Columns indexed according to position in name array: compartment_names = ['S', 'E', 'I', 'R', 'H', 'C', 'D']
    y_matrix = np.reshape(y_vals,[parameters.num_groups,len(compartment_names)])

    output = np.zeros(np.shape(y_matrix))

    # Iterate over each group
    # Nonessential = 0
    # Essential = 1

    for group_idx in range(parameters.num_groups):

        Beta_t_i = get_betas(t,parameters,group_idx)

        # Components for group i
        compartments_group_i = compartments(*y_matrix[group_idx,:])

        # Total population within group i
        N_i = sum(y_matrix[group_idx,:])

        # Get the infected population for each group for all 3 compartments
        I = sum(np.transpose(y_matrix[:,2:5]))

        # Get the hospitalized population for each group
        H = sum(sum(np.transpose(y_matrix[:,5:10])))

        # If using a healthcare model and considering the healthcare group,
        # we need to consider infections stemming from hospitals
        if 'Healthcare' in parameters.model and group_idx == 1:

            # Determine the beta or fraction of workers infected
            beta_hosp = get_hosp_beta(t,parameters,H)

        else:

            beta_hosp = 0

        # Susceptibles and Exposed DiffEq use special parameters I and Beta_t_i
        S_out_i = dS_dt(y_i = compartments_group_i,
                        p = parameters,
                        ...
In the model, we use $\beta$ to represent the number of contacts an individual has per day. Social distancing and other shelter in place (SIP) measures reduce $\beta$ by a parameter by $\theta$. We define $\theta$ as the remaining proportion of individual to individual transmission after social distancing, where $\theta = 1$ corresponds to no social distancing and $\theta = 0$ is complete isolation. In the various models of essential workers we consider, $\theta$ is applied to different $\beta$’s to reduce interactions according to how they are defined in the main text. These functions are used to get the $\beta$ terms under the specified model.

[28]: # Return the matrix of thetas that determine how to adjust betas given lockdown
def get_effect_of_social_distancing(p,t=0):
    if p.model == 'No Structure' or (p.rho > 0 and (p.model == 'USPS' or p.model == 'Healthcare' or p.model == 'Healthcare_Sigmoid')):
        social_distancing_effect = np.array([p.theta]*4)
    elif p.model == 'Cashier':
        social_distancing_effect = np.array([p.theta]+[1]*3)
    elif p.model == 'USPS' or p.model == 'Healthcare' or p.model == 'Healthcare_Sigmoid':
        social_distancing_effect = np.array([p.theta]*3 + [1])
    else:
raise ValueError('Model should be either Cashier, USPS, or No Structure. ' + p.model + ' is not an implemented model')

social_distancing_effect = np.reshape(social_distancing_effect,[p.num_groups,p.num_groups])

return social_distancing_effect

# Return the beta for within hospital interactions
def get_hosp_beta(t,p,H):
    if p.model == 'Healthcare_Sigmoid':
        return get_sigmoid_beta(t,p,H)
    else:
        # Default: assume the within beta hospital interaction is the same as the beta between I compartments and S
        return get_infectious_beta(p)*p.adjust_beta_hosp

def get_sigmoid_beta(t,p,H):

    exponent_parameter = 1
    halfway_point = 1/4
    max_infection_rate = get_infectious_beta(p)*p.adjust_beta_hosp*1.5*H_max/p.N

    halfway_exponent = halfway_point**exponent_parameter
    h_exponent = (H/H_max)**exponent_parameter
    return (max_infection_rate * (h_exponent) / (h_exponent+halfway_exponent))

def get_infectious_beta(p,model = ''):

    # Allow user to set model, but otherwise use parameter model
    if not model:
        model = p.model

    # Fraction of essential workers
    f = p.proportion_essential

    # Average time spent in I compartments

    # Average time spent in the hospital
    if model == 'Healthcare':
        avg_time_critical = (1-p.p_CD) * (p.t_CL + p.t_LR) + p.p_CD * (p.t_CD)
        avg_time_hospital = (1-p.p_HC) * p.t_HR + p.p_HC * (p.t_HC + avg_time_critical)
    avg_time_healthcare = (1-p.p_IA) * p.p_IH * avg_time_hospital
else:
    # ignore if not a healthcare model
    avg_time_healthcare = 0

    # Get the mixing matrix or set to proportional mixing if not provided
    C = p.C
    if C == []:
        C = np.array([[1-f,1-f],[f,f]])

    # Vector to describe the distribution of people
    people_array = np.array([1-f,f])

    # The weighted sum across mixings
    beta_coefficient = avg_time_infectious*(sum(np.matmul(C,people_array)) + p.
    rho * f)
    hosp_coefficient = avg_time_healthcare
    beta = p.R_0/(beta_coefficient + hosp_coefficient * p.adjust_beta_hosp * 
    keep_R0_constant)

    return beta

# This allows for greater within-group mixing than under proportional mixing
def get_extra_rho_effect(t,p,groupID):
    if groupID != 1:
        return 0

    if t > p.social_distancing_time and p.model == 'No Structure':
        return p.rho * (p.theta)
    return p.rho

def get_betas(t,p,groupID,model = ''):
    if not model:
        model = p.model
    social_distancing_effect = get_effect_of_social_distancing(p,t)
    if t>p.social_distancing_time:
        social_distancing_effect = social_distancing_effect[:,groupID]
    else:
        social_distancing_effect = social_distancing_effect[:,groupID] * 0 + 1

    # beta is R_0 * mean infectious time
    # This is the same beta across all infectious compartments and groups
    nointervention_beta = get_infectious_beta(p,model)

    # This gives you the betas including the mixing between groups (specific to 
    group i)
The parameters we use for the model come from estimates reported in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variable Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_E$</td>
<td>t_inc</td>
<td>4.6</td>
</tr>
<tr>
<td>$\tau_{IA}$</td>
<td>t_AR</td>
<td>5</td>
</tr>
<tr>
<td>$\tau_{IR}$</td>
<td>t_IR</td>
<td>5</td>
</tr>
<tr>
<td>$\tau_{IH}$</td>
<td>t_IH</td>
<td>5</td>
</tr>
<tr>
<td>$\tau_{HR}$</td>
<td>t_HR</td>
<td>8</td>
</tr>
<tr>
<td>$\tau_{HC}$</td>
<td>t_HC</td>
<td>6</td>
</tr>
<tr>
<td>$\tau_{CR}$</td>
<td>t_CL</td>
<td>7</td>
</tr>
<tr>
<td>$\tau_L$</td>
<td>t_LR</td>
<td>3</td>
</tr>
<tr>
<td>$\tau_{CD}$</td>
<td>t_CD</td>
<td>10</td>
</tr>
<tr>
<td>$P_{EIA}$</td>
<td>p_IA</td>
<td>$1/3$</td>
</tr>
<tr>
<td>$P_{EIH}$</td>
<td>p_IH</td>
<td>0.044</td>
</tr>
<tr>
<td>$P_{IHC}$</td>
<td>p_HC</td>
<td>0.3</td>
</tr>
<tr>
<td>$P_{CD}$</td>
<td>p_CD</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Note that $P_{EIH}$ is listed as 0.044 in the table above, but 0.066 in the parameters below. This is because in the code, this value is conditional on not being asymptomatic.
proportion_essential = 0.1, # What fraction of the
population is essential workers? 
rho = 1, 
max_days = 1000, # bookkeeping of
how many days simulated 
num_groups = 2, # bookkeeping of how
many groups 
compartement_names = compartment_names, # bookkeeping
of how many compartments 
t_inc = 4.6, # !time from E to I: exposed to
infected 
t_AR = 5, # !time from IA to R: infected and
asymptomatic to recovered 
t_IR = 5, # !time from IR to R: infected,
symptomatic and will recover to recovered 
t_IH = 5, # !time from IH to H: infected and will
need hospitalization to hospitalization 
t_HR = 8, # !time from HR to R: hospitalized and
will recover to recovered 
t_HC = 6, # !time from HC to C: hospitalization to
critical care 
t_CD = 10, # time from CD to D: critical care and
will die to death 
t_CL = 7, # time from CR to L: critical care and
will recover to post-critical care hospitalization 
t_LR = 3, # time from L to R: post-critical care
hospitalization to recovered 
p_IA = 1/3, # Proportions of infections that are
asymptomatic 
p_IH = 0.066, # Proportion of symptomatic infections that require hospitalizations (this corresponds to 4.4% of all infections that require hospitalization) 
p_HC = 0.3, # Proportion of hospitalizations that require critical care 
p_CD = 0.5, # Proportion of critical cases that are fatal 
change_in_p_IH = 1, # How much is the probability of hospitalization increased in OLD 
change_in_p_IA = 1, # How much is the probability of asymptomatic increased in OLD 
adjust_beta_hosp = 1) # change the beta for within hospital interactions relative to beta between I and S
The following code block contains some helper functions to return the counts of individuals within each compartment at the end of the modelling and to calculate $R_0$ based on the estimated doubling time of infections.

```python
Returns number of cases, hospitalizations, and deaths given model solution, number of groups, and compartment names
def get_compartment_counts(solution, num_groups, compartment_names = ['S', 'E', 'IA', 'IR', 'IH', 'HR', 'HC', 'CR', 'CD', 'L', 'R', 'D']):
 # convert solution into a matrix
 max_days = len(solution.y[0])
 solution_matrix = np.reshape(solution.y, [num_groups, len(compartment_names), max_days])
 # sum across groups
 total_solution = np.zeros([len(compartment_names), max_days])
 for i in range(num_groups):
 total_solution += solution_matrix[i]
 # sum across relevant compartments
 cases = sum(total_solution[2:])
 deaths = total_solution[-1]
 hospitalized = sum(total_solution[5:10])
 return cases, hospitalized, deaths

get R_0 from the doubling time
def R0_from_doubling_time(p, doubling_time, model= None, adjust_beta_hosp = np.nan, verbose = False):
 # allow user to specify the model and override the default model
 if not model:
 model = p.model
 if np.isnan(adjust_beta_hosp):
 adjust_beta_hosp = p.adjust_beta_hosp

 # Get average infectious time
 # if healthcare model, add average healthcare time to the infectious time
 if 'Healthcare' in model:
 avg_time_critical = (1 - p.p_CD) * (p.t_CL + p.t_LR) + p.p_CD * (p.t_CD)
 avg_time_hospital = (1 - p.p_HC) * p.t_HR + p.p_HC * (p.t_HC + avg_time_critical)
```

11
# only affects essential workers and include the relative deviation in the hospital beta

avg_time_infectious += keep_R0_constant * (1 - p.p_IA) * p.p_IH

avg_time_hospital *= adjust_beta_hosp

if verbose:

R0 = 1 + (p.t_inc + avg_time_infectious) * np.log(2) / doubling_time

return R0

Below is the main function used to return the results from a given model of essential workers and set of parameters.

```python
#This function will run the model above, and return the solution and parameters used in a tuple

def run_model(theta, R_0, t_lockdown, model, n_infected=50, n_exposed=50, prop_essential=0., max_days=1000,
 rho=1, change_in_p_IH=1, change_in_p_IA=1, num_groups=2, doubling_time=None,
 adjust_beta_hosp=1):

 # Define the initial conditions & population size
 N = 8e6

 # Number of groups
 num_groups = 2

 # Social interaction effects: C
 # C[i][j] = proportion of group I's contacts that are with group
 # rho allows deviations from proportionate mixing

 C = np.array([(1 - prop_essential) + rho * prop_essential,
 (1 - rho) * (1 - prop_essential),
 (1 - rho) * (prop_essential),
 1 - (1 - rho) * (1 - prop_essential) - rho])

 C = np.reshape(C, [num_groups, num_groups])

 if doubling_time:

 args = parameters(R_0=R_0,
 calculate_betas=N = N,
 population_size=C = C,)

```
social_distancing_time = t_lockdown,  # when does
social distancing start
theta = theta,  # How effective
is social distancing
model = model,  # Who social
distances?
proportion_essential = prop_essential,  #
rho = rho,  # record changes
from proportionate mixing
max_days = max_days,  # bookkeeping
of how many days simulated
num_groups = num_groups,  # bookkeeping
of how many groups
compartment_names = compartment_names,  # bookkeeping
of how many compartments

t_inc = 4.6,  # !time from E to I: exposed to
infected
t_AR =  5,  # !time from IA to R: infected and
asymptomatic to recovered
t_IR = 5,  # !time from IR to R: infected,
symptomatic and will recover to recovered
t_IH = 5,  # !time from IH to H: infected and will
need hospitalization to hospitalization
t_HR = 8,  # !time from HR to R: hospitalized and
will recover to recovered
t_HC = 6,  # !time from HC to C: hospitalization to
critical care
t_CD = 10,# time from CD to D: critical care and
will die to death
t_CL = 7,  # time from CR to L: critical care and
will recover to post-critical care hospitalization
t_LR = 3,  # time from L to R: post-critical care
hospitalization to recovered

p_IA = 1/3,  # Proportions of infections that are
asymptomatic
p_IH = 0.066,  # Proportion of symptomatic infections
that require hospitalizations, conditional on not being asymptomatic
p_HC = 0.3,  # Proportion of hospitalizations that
require critical care
p_CD = 0.5,  # Proportion of critical cases that are
fatal
\[
\text{change\_in\_p\_IH} = 1, \quad \# \text{How much is the probability of hospitalization increased in OLD}
\]

\[
\text{change\_in\_p\_IA} = 1, \quad \# \text{How much is the probability of asymptomatic increased in OLD}
\]

\[
\text{adjust\_beta\_hosp} = \text{adjust\_beta\_hosp}) \quad \# \text{change the beta for within hospital interactions relative to beta between I and S}
\]

\[
\text{if doubling\_time: } R_0 = \text{R0\_from\_doubling\_time(args,doubling\_time)}
\]

\[
\text{args} = \text{parameters}(R_0 = R_0, \quad \# R_0: \text{used to calculate betas}
\]

\[
\text{N} = N, \quad \# \text{total population}
\]

\[
\text{C} = C, \quad \# \text{Mixing matrix}
\]

\[
\text{social\_distancing\_time} = t\_lockdown, \quad \# \text{when does social distancing start}
\]

\[
\theta = \theta, \quad \# \text{How effective is social distancing}
\]

\[
\text{model} = \text{model}, \quad \# \text{Who social distances?}
\]

\[
\text{proportion\_essential} = \text{prop\_essential}, \quad \# \text{record changes from proportionate mixing}
\]

\[
\rho = \rho, \quad \# \text{record changes from proportionate mixing}
\]

\[
\text{max\_days} = \text{max\_days}, \quad \# \text{bookkeeping of how many days simulated}
\]

\[
\text{num\_groups} = \text{num\_groups}, \quad \# \text{bookkeeping of how many groups}
\]

\[
\text{compartment\_names} = \text{compartment\_names}, \quad \# \text{bookkeeping of how many compartments}
\]

\[
\text{t\_inc} = 4.6, \quad \# \text{time from E to I: exposed to infected}
\]

\[
\text{t\_AR} = 5, \quad \# \text{time from IA to R: infected and asymptomatic to recovered}
\]

\[
\text{t\_IR} = 5, \quad \# \text{time from IR to R: infected, symptomatic and will recover to recovered}
\]

\[
\text{t\_IH} = 5, \quad \# \text{time from IH to H: infected and will need hospitalization to hospitalization}
\]

\[
\text{t\_HR} = 8, \quad \# \text{time from HR to R: hospitalized and will recover to recovered}
\]

\[
\text{t\_HC} = 6, \quad \# \text{time from HC to C: hospitalization to critical care}
\]

\[
\text{t\_CD} = 10, \# \text{time from CD to D: critical care and will die to death}
\]

\[
\text{t\_CL} = 7, \quad \# \text{time from CR to L: critical care and will recover to post-critical care hospitalization}
\]
\[ t_{LR} = 3, \quad \text{# time from L to R: post-critical care} \]

hospitalization to recovered

\[ p_{IA} = \frac{1}{3}, \quad \text{# Proportions of infections that are} \]

asymptomatic

\[ p_{IH} = 0.066, \quad \text{# Proportion of symptomatic infections that} \]

require hospitalizations

\[ p_{HC} = 0.3, \quad \text{# Proportion of hospitalizations that require} \]

critical care

\[ p_{CD} = 0.5, \quad \text{# Proportion of critical cases that are fatal} \]

change in \( p_{IH} = 1 \), \quad \text{# How much is the probability of} \]

hospitalization increased in OLD

change in \( p_{IA} = 1 \), \quad \text{# How much is the probability of} \]

asymptomatic increased in OLD

adjust beta hosp = adjust beta hosp) \quad \text{# change the beta for} \]

within hospital interactions relative to beta between I and S

\begin{verbatim}
  single_population = np.zeros(len(compartment_names))
  single_population[1] = n_exposed
  single_population[2] = n_infected*args.p_IA
  single_population[0] = N - sum(single_population)
  initial_state = [(1 - prop_essential) * single_population,
                   prop_essential * single_population]

  # Convert initial state into 1-dimensional array
  initial_state = [params for group in initial_state for params in group]

  # Evaluate the model
  # Here, a stiff solver (Radau) not RK45 (default) is used
  sol = solve_ivp(lambda t, y: SEIR_HCD_model(t, y, args), [0, max_days],
                  initial_state, t_eval=np.arange(max_days), method = 'Radau')
  return (sol, args)
\end{verbatim}

The following functions are used to return various metrics from the output of a model run, as well as to set up a grid for plotting time courses and showing figure legends:

\[32\]: \text{# Get the cumulative infection rate at some time}

\begin{verbatim}
def get_infection_rate(solution, p, time = 365):
    # Turn the solution array into a matrix
    solution_matrix = np.reshape(solution.y,[p.num_groups,len(p.
        compartment_names),p.max_days])

    # If no time specified, get cumulative infection at end of time
    if not time or time == -1:
        return (sol, args)
\end{verbatim}
time = p.max_days - 1

# Get the number of infections, return it as a fraction of the populations
infections = sum(sum(solution_matrix[:,1:,time]))
return infections/p.N

# Return the metrics to show the added disease risk within the essential workers
def added_disease_risk(solution, p, method = 'g(t)', groupID = 1):
    solution_matrix = np.reshape(solution.y, [p.num_groups, len(p.compartment_names), p.max_days])
    f = p.proportion_essential
    if method == 'Fraction Infected':
        if groupID == 1:
            N = (p.N*(p.proportion_essential))
        else:
            N = (p.N*(1-p.proportion_essential))
        return sum(solution_matrix[groupID,1:,-1])/N
    elif method == 'Nonessential Comparison':
        L = sum(solution_matrix[1,1:,-1])/sum(solution_matrix[0,1:,-1])*((1-f)/f)
        return L
    elif method == 'g(t) additive':
        return sum(solution_matrix[1,1:,-1])/(sum(solution_matrix[1,1:,-1])+sum(solution_matrix[0,1:,-1]))
    elif method == 'g(t) multiplicative':
        return sum(solution_matrix[1,1:,-1])/(sum(solution_matrix[1,1:,-1])+sum(solution_matrix[0,1:,-1]))/f
    elif method == 'EisenA':
        return sum(solution_matrix[1,1:,-1])/(p.N*f) - sum(solution_matrix[0,1:,-1])/(p.N*(1-f))
    elif method == 'No Structure Comparison':
        NS_sol, NS_p = run_model(theta=p.theta, R_0=p.R_0,
                                 t_lockdown=p.social_distancing_time,
                                 model='No Structure',
                                 n_infected=20,
                                 nExposed=0,
                                 prop_essential=p.proportion_essential,
                                 max_days = p.max_days,
                                 rho = 0,
                                 change_in_p_IH = p.change_in_p_IH,
                                 change_in_p_IA = p.change_in_p_IA,
                                 doubling_time = 3,
                                 adjust_beta_hosp = 1)
NS_solution_matrix = np.reshape(NS_sol.y, (p.num_groups, len(p.compartment_names), p.max_days))

# Turn the solution array into a matrix

return sum(solution_matrix[1, 1:, -1]) / sum(NS_solution_matrix[1, 1:, -1])
else:
    raise ValueError("Method not understood")

# Given a solution to the model and the corresponding parameters, get several different metrics of model outcomes

def get_metrics(result_dict):
    RO = R0_from_doubling_time(args_default, 3)

    # Create a nested dict, where the structure is {model:{theta:{f:([],[])}}}    reversed_solved_dict = ddict(dict)
    for model, model_dict in result_dict.items():
        reversed_solved_dict[model] = ddict(dict)
        for f, f_dict in model_dict.items():
            for theta, (sol, args) in f_dict.items():
                reversed_solved_dict[model][theta][f] =
                    (get_infection_rate(solution=sol, p=args, time = 365),
                    added_disease_risk(solution=sol, p = args, method = 'Fraction Infected', groupID=0),
                    added_disease_risk(solution=sol, p = args, method = 'Fraction Infected', groupID=1))
        return reversed_solved_dict

# Assign row and column labels for the plots of the effective R over time

def assign_row_label_grid(ax, f, pad = 5, xy = (0,0.5), font_size = 30):
    ax.annotate('
f = {}
'.format(f)+'
', xy=xy, xytext=(-ax.yaxis.labelpad - pad, 0),
    xycoords=ax.yaxis.label, textcoords='offset points',
    size=font_size, ha='right', va='center', rotation=90)

# Label is the value of R_effective

def assign_column_label_grid(ax, value, pad = 25, xy = (0.5,1), font_size = 30):
    text = r'$R_0 \theta = {}$'.format(round(value, 2))
    ax.annotate(text, xy=xy, xytext=(0, pad),
    xycoords='axes fraction', textcoords='offset points',
    size=font_size, ha='center', va='baseline')

def get_R_effective(solution_matrix, p):
# Set up an empty array for both effective $R$ and the betas over time
R_eff = np.zeros(p.max_days+1)
betas_eff = np.zeros([2,2,p.max_days+1])

# Get the time values
t = np.arange(0,p.max_days)

# Fraction of population an essential worker
f = p.proportion_essential

# Get average time an infectious person is infectious

# Find the effects of social distancing. Second variable is from a different implementation
social_distancing_effect = get_effect_of_social_distancing(p,None)

# beta is $R_0$ * mean infectious time
# This is the same beta across all infectious compartments and groups
nointervention_beta = get_infectious_beta(p)

# Get fraction of infected population that is essential over time
I_t_0 = sum(solution_matrix[0,2:5,:])
I_t_1 = sum(solution_matrix[1,2:5,:])
S_t_0 = solution_matrix[0,0,:]/(p.N*(1-f))
S_t_1 = solution_matrix[1,0,:]/(p.N*f)
f_t_all = (I_t_1*f)/(I_t_0*(1-f)+I_t_1*f)
for j in t:
    # Get fraction of infected that are essential at this time, j
    f_t = f_t_all[j]

    # Calculate betas. This is elementwise multiplication not matrix multiplication
    betas = nointervention_beta*(p.C*(1-social_distancing_effect*(j>p.social_distancing_time)))
    betas_eff[:,:,j] = betas

    # Include extra effect from within group mixing
    betas_eff[1,1,j] += get_extra_rho_effect(j,p,1) * nointervention_beta

    # Calculate R effective by weighting betas by $f(t)$ and the average infectious time
    R_eff[j] = sum(np.matmul(betas_eff[:,:,j]*np.array([S_t_0[j],S_t_1[j]]),np.array([1-f_t,f_t])))
R_{eff}[j] = R_{eff}[j] \times \text{avg.time.infectious}

# If a healthcare model, include the within hospital infections
if 'Healthcare' in p.model:
    H = sum(np.transpose(solution_matrix[:, 5:10, j]))
    f_th = (H[1] \times f) / (H[0] \times (1 - f) + H[1] \times f)
    hosp_beta = get_hosp_beta(j, p, sum(H))
    avg_time_healthcare = (1 - p.p_IA) \times p.p_IH \times ((1 - p.p_HC) \times p.t_HR + p.p_HC \times (p.t_HC + (1 - p.p_CD) \times (p.t_CL + p.t_LR) + p.p_CD \times p.t_CD))
    R_{eff}[j] += avg_time_healthcare \times hosp_beta

return R_{eff}, betas_eff, f_t_all

def create_legend(fig, models: list, ls_styles: dict, linewidth = 2, legend_entries = {}, legend_keywords = {}):
    legend_entries['EWs'] = mpl.lines.Line2D([], [], color = 'k', ls = ':', linewidth = linewidth)
    legend_entries['nEWs'] = mpl.lines.Line2D([], [], color = 'k', ls = '-', linewidth = linewidth)
    for model in models:
        ls, color = ls_styles[model]
        legend_entries[model_labels[model]] = mpl.lines.Line2D([], [], color = color, ls = ls, linewidth = linewidth)

    legend = fig.legend(legend_entries.values(), legend_entries.keys(), **legend_keywords)
    return legend

def plot_grid(theta_values, f_values, metric, models, t_lockdown, max_days = 500, R_0=2.5, I0=20, adjust_beta_hosp = 1, figsize = (30,10), model_dependent_rho = None, linewidth = 2, font_size = 30):
    update_font_size(font_size)
    fig, axes = plt.subplots(len(theta_values), len(theta_values), figsize=(14*len(theta_values),12*len(f_values)))

    # Plotting LS and color for each model
    ls_styles = {'No Structure':('-', [0.5,0.5,0.5,0.5]),
                  'Cashier':('-', [0,0,1,1]),
                  'Healthcare':('-', 'r'),
                  'USPS':('-', 'g'),
                  'Healthcare_Sigmoid':('-', 'purple')}
for i,f in enumerate(f_values):
    for j,theta in enumerate(theta_values):
        for model_index, model in enumerate(models):

            rho = model_dependent_rho[model]

            # run model and reshape output
            solution, p = run_model(theta = theta,
                                     R_0 = R_0,
                                     t_lockdown = t_lockdown,
                                     model = model,
                                     n_infected = I0,
                                     n_exposed = I0,
                                     prop_essential = f,
                                     max_days = max_days,
                                     rho = rho,
                                     adjust_beta_hosp = adjust_beta_hosp*f)

            solution_matrix = np.reshape(solution.y, [p.num_groups, len(p.compartment_names), p.max_days])

            # Get average cumulative infection rate across population
            avg_infection_rate = sum(sum(solution_matrix[:,1:,::]))/8e6

            # Get proportion of population in each compartment relative to group size
            # Note, here N is hardcoded as 8e6 (approx. NYC)
            solution_matrix[0,:,::] = solution_matrix[0,:,::]/(8e6*(1-f))
            solution_matrix[1,:,::] = solution_matrix[1,:,::]/(8e6*f)

            # Get the effective R, betas, and g(t)
            R_effective, Betas, G = get_R_effective(solution_matrix, p)
            R_effective = R_effective[:-1]
            R_effective[:t_lockdown+1] = np.nan

            # Get color for each model but don't use LS
            ls, color = ls_styles[model]
            ls = '-'

            if len(f_values) > 1:
                if len(theta_values) > 1:
                    ax = axes[i][j]
                else:
                    ax = axes[i]
            else:
                if len(theta_values) > 1:
                    ax = axes[i][j]
                else:
                    ax = axes[i]
```python
ax = axes[j]
else:
 ax = axes

plt.sca(ax)

if metric == 'Average_Infection':
 # Plot cumulative infection rate in population
 plt.plot(np.arange(0,max_days),avg_infection_rate,ls='-',color=color,label=model,linewidth = linewidth)
 plt.ylabel("Cumulative Infections")

elif metric == 'Essential_Infection':
 plt.plot(np.arange(0,max_days),sum(solution_matrix[1,1:,:]),ls = ':',color=color,linewidth = linewidth,alpha = 1)
 plt.ylabel("Cumulative Infections in Essential Workers")

elif metric == 'Nonessential_Infection':
 plt.plot(np.arange(0,max_days),sum(solution_matrix[0,1:,:]),ls = ':',color=color,linewidth = linewidth,alpha = 1)
 plt.ylabel("Cumulative Infections in Non-Essential Workers")

elif metric == 'All_Infection':
 plt.plot(np.arange(0,max_days),sum(solution_matrix[1,1:,:]),ls = ':',color=color,linewidth = linewidth,alpha = 1)
 plt.plot(np.arange(0,max_days),sum(solution_matrix[0,1:,:]),ls = '-',color=color,linewidth = linewidth,alpha = 1)
 plt.ylabel("Cumulative Infections")

elif metric == 'R(t)':
 plt.plot(np.arange(0,max_days),R_effective,color = color,linewidth = linewidth,ls=ls,label=model,rho = 1)
 plt.ylabel("R(t)")

else: raise ValueError('Metric "{}" not understood'.format(metric))

plt.xlabel("Days")
plt.xlim([0,200])

if metric != 'R(t)':
 plt.fill_betweenx(y=[1e-7,1],x1=0,x2=p.s socially_distancing_time,color=[0.8,0.8,0.8,0.5])

Assign a column label
```
if i == 0 and len(theta_values) > 1:
    assign_column_label_grid(ax,R_0*(theta),font_size = font_size)
    # Assign a row column
    if j == 0 and len(f_values) > 1:
        assign_row_label_grid(ax,f,font_size = font_size)

legend = create_legend(fig = fig,
    ls_styles = ls_styles,
    models = models,
    linewidth = linewidth,
    legend_keywords = {'loc':'upper left',
        'bbox_to_anchor':(0.82, 0.55),
        'framealpha': 1, 
        'edgecolor':'k'})

for ax in axes.flat:
    ax.tick_params(width = 5, length = 10)
    ax.tick_params(width = 2.5, length = 5, which='minor')
plt.subplots_adjust(wspace=0.3)
plt.subplots_adjust(hspace=0.3)
plt.savefig('Figure2.png',bbox_extra_artists = legend)
plt.show()

1.0.1 Figure 2 - Cumulative infection rates among groups

Using the model, we can now look at the cumulative infection rates among essential and non-essential workers under various parameter values. The following code reproduces Figure 2 from the main text, and uses $f = 0.05$ and a lockdown time of 59 days after the start of the infection.

[33]: # Make plot for Figure 2
desired_Reff = np.array([0.5,0.9,1.5])
R_0 = R0_from_doubling_time(args_default,3)
print('t',(1-desired_Reff/R_0))

plt.rc('legend', fontsize=30)
plot_grid(theta_values = desired_Reff/R_0,
    f_values = [0.05],
    max_days = 400,
    metric = 'All_Infection',
    R_0 = R_0,
    I0 = 20,
    t_lockdown = 59,
    models = ['Cashier','USPS','Healthcare','No Structure'],
    model_dependent_rho = {'No Structure': 0,
        'Cashier': 0,
        'Healthcare': 0.5,
First, we can examine the effect that increasing the proportion $f$ of the population that is considered an essential worker has on the cumulative infection rate. The following plot shows what happens for $f = 0.10$ (instead of $f = 0.05$ as in the main text), which yields qualitatively similar results.

[34]: # Make a similar plot to Figure 2, but change $f$

```python
plt.rc('legend', fontsize=30)
plot_grid(theta_values = desired_Reff/R_0,
 f_values = [0.10],
 max_days = 400,
 metric = 'All_Infection',
 R_0 = R_0,
 I0 = 20,
 t_lockdown = 59,
 models = ['Cashier','USPS','Healthcare','No Structure'],
 model_dependent_rho = {'No Structure': 0,
 'Cashier': 0,
 'Healthcare': 0.5,
 'USPS': 0.5,
 'Healthcare_Sigmoid': 0},
 linewidth = 4,
 adjust_beta_hosp = 9.5649565,
 font_size=35)
```
Additionally, we can change the time of the lockdown relative to the pandemic progression. Below is a similar plot for $f = 0.05$, but with a lockdown time 10 days earlier. The qualitative conclusions outlined in the main text remain the same.

[35]: # Make a similar plot to Figure 2, but change t_lockdown

```python
plt.rc('legend', fontsize=30)
plot_grid(theta_values = desired_Reff/R_0,
 f_values = [0.05],
 max_days = 400,
 metric = 'All_Infection',
 R_0 = R_0,
 I0 = 20,
 t_lockdown = 59 - 10,
 models = ['Cashier', 'USPS', 'Healthcare', 'No Structure'],
 model_dependent_rho = {'No Structure': 0,
 'Cashier': 0,
 'Healthcare': 0.5,
 'USPS': 0.5,
 'Healthcare_Sigmoid': 0},
 linewidth = 4,
 adjust_beta_hosp = 9.5649565,
 font_size=35)
```
1.0.2  Figure 3 - Heatmaps of cumulative infections

Next, we can plot the cumulative infections after a year in the total population and in each class of worker as a heatmap for combinations of $\theta$ and $f$. To do so, we need to iterate over a grid of $\theta$ and $f$ values and solve the model for each combination. The functions below run these iterations and set up the plotting area for the heatmaps:

```python
Run several models over different values of theta and f
Here, we look at theta between 0 and 1, and f between 0 and 0.25
def run_iterations(model_names, theta_values = np.linspace(0,1,21),f_values = np.linspace(0,0.25,21),
 R_0 = 2.5, t_lockdown = 59, n_infected = 50, n_exposed = 50,
 max_days = 1000,
 change_in_p_IH = 1, change_in_p_IA = 1, doubling_time = None,
 rho = 9.5649565):

 results_dict = {}

 # For each of the specified models
 for model in model_names:
 print(model)
 results_dict[model] = {}

 if model == 'USPS' or model == 'Healthcare':
 rho = 0.5
 else:
 rho = 0

 # For each of the given f values (f = fraction essential)
 for f in f_values:

 # f can't be 0
 if f == 0: continue

 #print('	',f)
 results_dict[model][f] = {}

 # for each of the given theta values (theta = effectiveness of social distancing)
 for theta in theta_values:

 # run the model and record the results
 results_dict[model][f][theta] = run_model(theta = theta,
 R_0 = R_0,
 t_lockdown=t_lockdown,
 max_days = max_days,
 change_in_p_IH = change_in_p_IH,
 change_in_p_IA = change_in_p_IA,
 doubling_time = doubling_time,
 rho = rho)
```

[36]:
model=model,

~n_infected=n_infected,

~n_exposed=n_exposed,

~prop_essential=f,

~max_days = max_days,

~rho = rho,

~change_in_p_IH =

~change_in_p_IA =

~adjust_beta_hosp =

return results_dict

def assign_row_label_figure3(ax, model, pad = 25, xy = (0,0.5), model_labels = model_labels, font_size = 12):

    # Adds the text to left of the subplot
    ax.annotate(model_labels[model], xy=xy, xytext=(-ax.yaxis.labelpad - pad, 0),
                xycoords=ax.yaxis.label, textcoords='offset points',
                size=font_size, ha='right', va='center',rotation=90)

def assign_column_label_figure3(ax, text, index, pad = 5, xy = (0.5,1), font_size=12):

    letter_maps = {0: 'A',
                   1: 'B',
                   2: 'C'}

    label = letter_maps[index] + ':' + text

    pad = 5 # in points
    ax.annotate(label+'\n', xy=xy, xytext=(0, pad),
                 xycoords='axes fraction', textcoords='offset points',
                 size=font_size, ha='center', va='baseline')

def plot_heatmap(sol_dict, model_names = ['No Structure', 'Cashier', 'USPS'],
                  Xname = '', Yname = '', font_size = 30, center_point = None):

    update_font_size(font_size)

    # The models we are plotting heatmaps for
    model_keys = list(sol_dict.keys())

    #
    variable_1_keys = np.sort([i for i in sol_dict[model_keys[0]].keys()])

    26
```python
variable_2_keys = np.sort([i for i in
sol_dict[model_keys[0]][variable_1_keys[0]].keys()])

fig, axes_all = plt.subplots(len(model_names),3,figsize=[45,10*len(model_names)])
cbar_ax = fig.add_axes([0.85, 0.15, 0.02, 0.7])

Only considering 2 metrics
for metric in range(3):

 # Name of the metrics and levels to plot contour curves for
 metric_names = {0:('Total infections after one year',[center_point]),
 1:('Infections among non-essentials',[]),
 2:('Infections among essential workers',[])}
 metric_name,levels = metric_names[metric]

 # Get the axis for this model
 axes = [row_axes[metric] for row_axes in axes_all]

 # Create a matrix to build the heatmaps from
 sol_array = np.zeros([len(model_keys),len(variable_1_keys),len(variable_2_keys)])

 for i,model in enumerate(model_names):

 # Reformat keys to look nice
 axis_1_keys = []
 axis_2_keys = []

 # Get R0 to convert from theta to r0(theta)
 R0 = R0_from_doubling_time(args_default,3)
 for index,key1 in enumerate(variable_1_keys):
 axis_1_keys.append(round(R0*(key1),2))
 for index,key2 in enumerate(variable_2_keys):
 axis_2_keys.append(key2)

 # Fill in the matrix
 model_dict = sol_dict[model]
 for j,(var1,var1_dict) in enumerate(model_dict.items()):
 for k,(var2,solutions) in enumerate(var1_dict.items()):
 sol_array[i,j,k] = solutions[metric]

 plt.sca(axes[i])
 # Get the relevant part of the matrix and orientate the matrix correctly (transpose then flip vertically)
 data = np.flip(np.transpose(sol_array[i,:,::]))
```
The following block of code reproduces the heatmaps depicted in Figure 3 of the main text. Here, we are assuming a lockdown time of 59 days.

```python
[37]: keep_R0_constant = False
 # Get R_0 assuming a doubling time of 3 days
 R_0 = R0_from_doubling_time(args_default, 3)
```
R_0_values = np.linspace(2,0,21)

# Get the values of theta and f to iterate over
# Only use values of theta such that R0(theta) < 2
theta_values=np.sort(R_0_values/R_0)
f_values = np.linspace(0,0.25,26)
all_results_phaseDiagram2 = run_iterations(theta_values=theta_values,
f_values = f_values,
R_0 = R_0,
n_exposed = 0,
n_infected = 20,
model_names = ['Cashier','USPS','Healthcare'])

# Make the plot for Figure 3
# This takes the resulting model solutions and converts them to the metrics we want
solved_results = get_metrics(all_results_phaseDiagram2)
# This plots the metrics we want as a heatmap.
sol, pp = run_model(t_lockdown=59,theta = (1/R_0),R_0 = R_0, n_exposed = 0,
n_infected = 20, rho = 0,model = 'No Structure',prop_essential=0.05)
center_point = get_infection_rate(solution=sol,p=pp, time = 365)
plot_heatmap(solved_results,Yname=r'$f$',Xname=r'$R_0 \theta$',model_names = ['Cashier','USPS','Healthcare'],font_size = 42,center_point = center_point)

Cashier
USPS
Healthcare
Qualitatively similar results are obtained if the lockdown date is changed to be ten days earlier.

```
[38]: # Get the values of theta and f to iterate over
Only use values of theta such that R0(theta) < 2
theta_values = np.sort(R_0_values/R_0)
f_values = np.linspace(0, 0.25, 26)
all_results_phaseDiagram2 = run_iterations(theta_values=theta_values,
f_values = f_values,
R_0 = R_0,
n_exposed = 0,
n_infected = 20,
t_lockdown=49, # Changing the lockdown
model_names = ['Cashier', 'USPS', 'Healthcare'])
Make the plot for Figure 3, but with the t_lockdown moved 10 days earlier
This takes the resulting model solutions and converts them to the metrics we want
solved_results = get_metrics(all_results_phaseDiagram2)
This plots the metrics we want as a heatmap.
sol, pp = run_model(t_lockdown=49, theta = (1/R_0), R_0 = R_0, n_exposed = 0,
n_infected = 20, rho = 0, model = 'No Structure', prop_essential=0.05)
center_point = get_infection_rate(solution=sol, p=pp, time = 365)
```
1.0.3 Figure 4 - Time-resolved dynamics of infections

In Figure 4 of the main text, we show the time-resolved dynamics of infections for \( f = 0.05 \) and \( R_0 \theta = 0.5 \). The following code defines functions to calculate the time-resolved proportion of essential and non-essentials that are infected, the fraction of infected individuals that are essential workers, and the proportion of new infections for different routes of transmission.

```python
Assign row and column labels for the plots of the effective R over time
def assign_row_label_figure4(ax, model, letter, pad = 5, xy = (0,0.5), letter_pad = 0):
 if not letter_pad:
 letter_pad = pad*20
 ax.annotate(letter, xy=xy, xytext=(-ax.yaxis.labelpad - letter_pad, 0),
 xycoords=ax.yaxis.label, textcoords='offset points',
 size='large', ha='center', va='center', rotation=0)
```

Cashier

USPS

Healthcare
ax.annotate(model+"\n", xy=xy, xytext=(-ax.yaxis.labelpad - pad, 0),
xycoords=ax.yaxis.label, textcoords='offset points',
size='large', ha='center', va='center', rotation=90)

# Label is the value of R_effective
def assign_column_label_figure4(ax,model, pad = 5, xy = (0.5,1)):
    text = model_labels[model]
    pad = 5  # in points
    ax.annotate(text+"\n", xy=xy, xytext=(0, pad),
                xycoords='axes fraction', textcoords='offset points',
                size='large', ha='center', va='baseline')

# Get the three metrics to plot in Figure 4
def get_figure4_metrics(solution_matrix,p):
    # Fraction of population an essential worker
    f = p.proportion_essential

    # Proportion infected in each group
    I_t_0 = sum(solution_matrix[0,2:5,:])
    I_t_1 = sum(solution_matrix[1,2:5,:])

    # G(t): proportion of infected that are essential workers
    G_t = (I_t_1)/(I_t_0+I_t_1)

    # Find the effects of social distancing. Second variable is from a different implementation
    social_distancing_effect = get_effect_of_social_distancing(p,None)

    # beta is R_0 * mean infectious time
    # This is the same beta across all infectious compartments and groups
    nointervention_beta = get_infectious_beta(p)

    # Get the within hospital beta and calculate number of within hospital infections. 0 if not a healthcare model
    if 'Healthcare' in p.model:
        hosp_beta = get_hosp_beta(t='None',p=p,H='None')
    else:
        hosp_beta = 0
    print(hosp_beta)

    within_hosp_infections = hosp_beta * sum(sum(solution_matrix[:,5:10,:])) * solution_matrix[1,0,:] / (p.N*f)

    t = np.arange(p.max_days)
    new_infections = np.zeros([2,2,p.max_days])
    people_distribution = [1-f,f]
for j in t:
    # Calculate betas. This is elementwise multiplication not matrix multiplication
    betas = nointervention_beta*(p.C)
    if j>p.social_distancing_time:
        betas = betas*(social_distancing_effect)
    # Include extra effect from within group mixing
    betas[1,1] += get_extra_rho_effect(j,p,1) * nointervention_beta
    for i in [0,1]:
        for k in [0,1]:
            new_infections[i,k,j] = betas[k,i] * sum(solution_matrix[i,2:5,j]) * (solution_matrix[k,0,j]) /
            (p.N*people_distribution[k])
    total_infections = sum(sum(new_infections[:,:,:]))+within_hosp_infections[j]
    new_infections[:,:,j] = new_infections[:,:,j]/total_infections
    within_hosp_infections[j] = within_hosp_infections[j]/total_infections
    return G_t, (I_t_0/(p.N*(1-f)), I_t_1/(p.N*f)), new_infections,within_hosp_infections

# Make model labels a global so we can access anywhere
model_labels = {'Cashier': 'Public Facing',
                'USPS': 'Non-Public Facing',
                'Healthcare': 'Healthcare',
                'No Structure': 'No essential workers',
                'Healthcare_Sigmoid': 'Healthcare'}

# Function to plot the metrics
def create_figure4(theta, models, t_lockdown, max_days = 500,R_0=2.,
                    I0=50,adjust_beta_hosp = 9.5,
                    figsize = (30,10),model_dependent_f = None,model_dependent_rho = None, linewidth = 2,
                    xlim = 250,legend_keywords = {'framealpha': 1,
                                                'edgecolor': 'k'}):

    fig, axes_all = plt.subplots(3, len(models),figsize=(12*len(models),30))
    (axes_I,axes_G,axes_B) = axes_all
    # Plotting LS and color for each model
    ls_styles = {'No Structure':('-', [0,0,0,0.5]),
                 'Cashier':(':', [0,0,1,1]),
                 'Healthcare':('--', 'r'),
                 'USPS':('--', 'g'),
                 'Healthcare_Sigmoid':('--', 'purple')}
legend_entries = {}
max_values_r = ddict(float)
max_values_g = ddict(float)
for model_index, model in enumerate(models):
    # If doing multiple theta values, unpack axes
    if len(models) > 1:
        ax_G = axes_G[model_index]
        ax_I = axes_I[model_index]
        ax_B = axes_B[model_index]
    else:
        ax_G = axes_G
        ax_I = axes_I
        ax_B = axes_B

    # Get f and rho for each model
    f1 = model_dependent_f[model]
rho1 = model_dependent_rho[model]

    # run model and reshape output
    solution, p = run_model(theta = theta,
                            R_0 = R_0,
                            t_lockdown = t_lockdown,
                            model = model,
                            n_infected = I0,
                            n_exposed = 0,
                            prop_essential = f1,
                            max_days = max_days,
                            rho = rho1,
                            adjust_beta_hosp = adjust_beta_hosp*f1)

    solution_matrix = np.reshape(solution.y, [p.num_groups, len(p.
                                        compartment_names), p.max_days])

    # Get the effective R, betas, and g(t)
    G_t, I_t, new_infections, within_hosp_infections = get_figure4_metrics(solution_matrix, p)

    # Get color for each model but don't use LSs
    ls, color = ls_styles[model]
    ls = '-'

    # Plot g(t)
    plt.sca(ax_G)
    plt.hlines([f1], xmin = t_lockdown, xmax = p.max_days, color = [0.5, 0.
                                  5, 0.5, 0.5], ls = '-', linewidth = linewidth, label='No difference')
plt.plot(np.arange(0,max_days),G_t,ls = '-',color='k',linewidth = 8)
plt.xlabel("Days")
plt.fill_between(y1=(0,0),y2=(1,1),x=(0,t_lockdown),color=[0.8,0.8,0.8,0.5])
plt.ylim([0,1.0])
plt.xlim([0,xlim])
if model_index == len(models) - 1:
    plt.legend(loc='upper left',bbox_to_anchor = (0.56, 0.95),**legend_keywords)

# Plot I(t)
I_styles = {0:"Non-essentials'','-'),1:'Essentials',':')}
plt.sca(ax_I)
for groupID in range(2):
    label,ls = I_styles[groupID]
    ax_I.plot(np.arange(0,max_days),I_t[groupID],color = 'k',linewidth = linewidth,ls=ls,label=label)
ax_I.set_xlabel("Days")
ax_I.set_xlim([0,xlim])
ax_I.set_yscale("log")
plt.fill_between(y1=(0,0),y2=(1,1),x=(0,t_lockdown),color=[0.8,0.8,0.8,0.5])
plt.ylim([1e-6,2e-1])
if model_index == len(models) - 1:
    plt.legend(**legend_keywords,loc='upper left',bbox_to_anchor = (0.56, 0.95))

# Plot where new infections come from
plt.sca(ax_B)
B_styles = {0:{0:'xkcd:tomato','-','NN'),
            1:{'xkcd:tomato','','NE')},
      1:{0:'xkcd:dodger blue','-','EN'),
            1:{'xkcd:dodger blue','','EE')}}
for infectious_groupID in [0,1]:
    for susceptible_groupID in [0,1]:
        color,ls,label = B_styles[infectious_groupID][susceptible_groupID]
        plt.plot(np.arange(0,max_days),new_infections[infectious_groupID,susceptible_groupID,:],color = color,linewidth = linewidth,ls=ls,label=label)
if infectious_groupID == 0 and susceptible_groupID == 1:
    plt.plot([],[],color=[0,0,0,0],label=' ')  
plt.plot(np.arange(0,max_days),within_hosp_infections,color = 'xkcd:dark sea green',linewidth = linewidht,ls='--',label='WH')
plt.xlabel("Days")
plt.xlim([0,xlim])
plt.ylim([1e-3,1.1])
plt.yscale('log')
plt.fill_between(y1=(0,0),y2=(2,2),x=(0,t_lockdown),color=[0.8,0.8,0.8,0.5])
if model_index == len(models) - 1:
    plt.legend(loc = 'upper left',
    bbox_to_anchor = (0.56, 0.65),
**legend_keywords,ncol = 2)

# Assign a column label
assign_column_label_figure4(axes_I[model_index],p.model)
assign_row_label_figure4(axes_I[0],'Incidence','A',letter_pad = 120)
assign_row_label_figure4(axes_G[0],\'EW Fraction of\nInfected','B',pad=50,letter_pad = 150)
assign_row_label_figure4(axes_B[0],\'Proportion of\nNew Infections','C',letter_pad = 120)
for ax in axes_all.flat:
    ax.tick_params(width = 5, length = 10)
    ax.tick_params(width = 2.5, length = 5,which='minor')
plt.subplots_adjust(wspace=0.25,hspace=0)
plt.tight_layout()
plt.show()
In the figure below, we change the lockdown date to 10 days earlier in the pandemic progression. Qualitatively similar results are obtained.

# Choose theta values such that R_0*(theta) is some specified number

desired_Reff = 0.5
R_0 = R0_from_doubling_time(args_default,3)
keep_R0_constant = False

update_font_size(40)
create_figure4(theta = (desired_Reff/R_0),
max_days = 400, R_0=R_0, I0=20,
t_lockdown = 49, # Change lockdown to be 10 days earlier
models = ['Cashier', 'USPS', 'Healthcare'],
model_dependent_f = {'No Structure': 0.05,
                     'Cashier': 0.05,
                     'USPS': 0.05,
                     'Healthcare': 0.05,
                     'Healthcare_Sigmoid': 0.05},

model_dependent_rho = {'No Structure': 0,
                       'Cashier': 0,
                       'Healthcare': 0.5,
                       'USPS': 0.5,
                       'Healthcare_Sigmoid': 0},
linewidth = 5,
adjust_beta_hosp = 9.5649565)

0
0
0.3078070891649127
1.0.4 Fitting to empirical data

Although the goal of this work is not to model the outbreak in a particular city/region or use it to make quantitative predictions, we can assess how well the parameter choices and the overall model match the progression of the ongoing pandemic by fitting to empirical data. Following others, we focus on the number of deaths rather than of cases, because (although not without problems) these numbers seem more reliable. Here, we use publically available cumulative deaths for three U.S. cities: Seattle, Chicago, and New York City. As a starting point to focus on a more reliable subset of the data, we remove the most recent 2 days and all dates before the 10th reported death.

For New York City, we note that while both confirmed and probable deaths due to Covid-19 are reported, probable deaths were not added until March 11th, and over 4500 were added retroactively in mid-April. Even these are likely an under-estimate as more than 4200 deaths remain unexplained.

In the code block below, we read in and format publically available data on Covid-19 deaths (and hospitalizations for NYC).
# The fits are using data that is current on 5/3/2020

# Read in Seattle data

```python
counties_cases = pd.read_csv("~/us-counties.csv")
counties_cases.rename(columns={"date":'DATE_OF_INTEREST'}, inplace=True)
counties_cases['DATE_OF_INTEREST'] = pd.to_datetime(counties_cases['DATE_OF_INTEREST'])
seattle_cases = counties_cases[counties_cases['county']=='King']
seattle_cases = seattle_cases[seattle_cases['state']=='Washington']
seattle_cases.reset_index(drop=True, inplace=True)
seattle_cases = seattle_cases.drop([nrows-1,nrows-2])
seattle_cases["cumulative_cases"] = seattle_cases["cases"]
seattle_cases["cumulative_deaths"] = seattle_cases["deaths"]
first_date = seattle_cases['DATE_OF_INTEREST'][0]
seattle_cases["day_num"] = (seattle_cases['DATE_OF_INTEREST'] - first_date).dt.days.astype(int)
day_of_tenth_death = seattle_cases[seattle_cases["cumulative_deaths"]>10].DATE_OF_INTEREST.iloc[0]
seattle_cases = seattle_cases[seattle_cases["DATE_OF_INTEREST"]>=(day_of_tenth_death)]
seattle_cases.reset_index(drop=True, inplace=True)
```

# Create Chicago data

```python
chicago_cases = counties_cases[counties_cases['county']=='Cook']
chicago_cases = chicago_cases[chicago_cases['state']=='Illinois']
chicago_cases.reset_index(drop=True, inplace=True)
chicago_cases = chicago_cases.drop([nrows-1,nrows-2])
chicago_cases["cumulative_cases"] = chicago_cases["cases"]
chicago_cases["cumulative_deaths"] = chicago_cases["deaths"]
first_date = chicago_cases['DATE_OF_INTEREST'][0]
chicago_cases["day_num"] = (chicago_cases['DATE_OF_INTEREST'] - first_date).dt.days.astype(int)
day_of_tenth_death = chicago_cases[chicago_cases["cumulative_deaths"]>10].DATE_OF_INTEREST.iloc[0]
chicago_cases = chicago_cases[chicago_cases["DATE_OF_INTEREST"]>=(day_of_tenth_death)]
chicago_cases.reset_index(drop=True, inplace=True)
```

# Read in NYC data
# Cases, hospitalization data: https://raw.githubusercontent.com/nychealth/coronavirus-data/master/case-hosp-death.csv
# Probable deaths: https://raw.githubusercontent.com/nychealth/coronavirus-data/master/probable-confirmed-dod.csv

# Read in NYC data
nyc_cases = pd.read_csv("~/case-hosp-death.csv")
nrows = nyc_cases.shape[0]
nyc_cases = nyc_cases.drop([nrows-1,nrows-2])
# Replace NA with 0
nyc_cases = nyc_cases.fillna(0)
nyc_cases['DATE_OF_INTEREST'] = pd.to_datetime(nyc_cases['DATE_OF_INTEREST'])
first_date = nyc_cases['DATE_OF_INTEREST'][0]
nyc_cases['day_num'] = (nyc_cases['DATE_OF_INTEREST'] - first_date).dt.days.astype(int)
nyc_cases['cumulative_cases'] = nyc_cases['CASE_COUNT'].sort_index().cumsum()
nyc_cases['cumulative_hospitalized'] = nyc_cases['HOSPITALIZED_COUNT'].sort_index().cumsum()

nyc_prob_deaths = pd.read_csv("~/probable-confirmed-dod.csv")
#Read in probable deaths
nyc_prob_deaths = nyc_prob_deaths.fillna(0)
nyc_prob_deaths['DATE_OF_INTEREST'] = pd.to_datetime(nyc_prob_deaths['date_of_death'])
nyc_cases = nyc_cases.merge(nyc_prob_deaths, on='DATE_OF_INTEREST')
nyc_cases['all_deaths'] = nyc_cases['CONFIRMED_COUNT'] + nyc_cases['PROBABLE_COUNT']
nyc_cases['cumulative_deaths'] = nyc_cases['all_deaths'].sort_index().cumsum()
day_of_tenth_death = nyc_cases[nyc_cases['cumulative_deaths']>10].DATE_OF_INTEREST.iloc[0]
nyc_cases = nyc_cases[nyc_cases['DATE_OF_INTEREST']>(day_of_tenth_death)]

# Make plots showing real data in Seattle
update_font_size(10,rcParams = mpl.rcParams)
plt.plot(seattle_cases.day_num, seattle_cases.cumulative_cases, color='blue', linewidth=1, label='Cumulative Cases')
plt.plot(seattle_cases.day_num, seattle_cases.cumulative_deaths, color='red', linewidth=1, label='Cumulative Deaths')
plt.xlabel('Days since first case in Seattle')
plt.ylabel('Number of Individuals')
plt.legend(loc='best')
plt.yscale('log')
plt.show()

# Make plots showing real data in Chicago
plt.plot(chicago_cases.day_num, chicago_cases.cumulative_cases, color='blue', linewidth=1, label='Cumulative Cases')
plt.plot(chicago_cases.day_num, chicago_cases.cumulative_deaths, color='red',
         linewidth=1, label='Cumulative Deaths')
plt.xlabel('Days since first case in Chicago')
plt.ylabel('Number of Individuals')
plt.legend(loc='best')
plt.yscale('log')
plt.show()

# Reset the indexes for all locations
nyc_cases.reset_index(drop=True, inplace=True)
seattle_cases.reset_index(drop=True, inplace=True)
chicago_cases.reset_index(drop=True, inplace=True)
The “steps” in the Chicago data correspond to a weekend effect, where reported deaths are decreased for Saturdays and Sundays.

```
[59]: # Make plots showing real data in New York City
 plt.plot(nyc_cases.day_num, nyc_cases.cumulative_cases, color='blue',
 linewidth=1, label='Cumulative Cases')
 plt.plot(nyc_cases.day_num, nyc_cases.cumulative_hospitalized, color='purple',
 linewidth=1, label='Cumulative Hospitalizations')
 plt.plot(nyc_cases.day_num, nyc_cases.cumulative_deaths, color='red',
 linewidth=1, label='Cumulative Deaths')
 plt.xlabel('Days since first case in NYC')
 plt.ylabel('Number of Individuals')
 plt.legend(loc='best')
 plt.yscale('log')
 plt.show()
```
The function below is used to compute the error of the model during the optimization procedure. Here, we are minimizing the root-mean-square-error (RMSE) of the per-day change in the death count. In the optimization presented below, we are inferring $R_0$, $\theta$, the starting time of the infection, and the time of lockdown relative to the first case.

```python
[71]: def SEIR_model_loss(params_to_estimate, data, n_forecast, model, lockdown_t, start_t, N=8e6, fit_hospital=False, adjust_beta_hosp=1, rho=1, error=True):
 # Parameters passed from optimization algorithm
 R_0, theta, lockdown_t = params_to_estimate[0:3]
 pred_infected = 20

 if theta < 0 or R_0 < 0 or lockdown_t < 0 or start_t < 0:
 return np.inf
 # Get actual data
 n_infected = data['cumulative_cases']
 n_deaths = data['cumulative_deaths']

 # Number of days that we have data for
 n_train = data.shape[0]

 # Define how many days to simulate
 max_days = n_forecast

 # Define proportion essential
```
prop_essential = 0.1

# Number of groups
num_groups = 2

# Define the compartments
compartment_names = ['S', 'E', 'IA', 'IR', 'IH', 'HR', 'HC', 'CR', 'CD', 'L', 'R', 'D']
compartments = namedtuple('compartments', compartment_names)

# Define the initial conditions & population size
n_exposed = 0
N = N

# Social interaction effects: C
# C[i][j] = proportion of group I's contacts that are with group
# rho allows deviations from proportionate mixing
C = np.array([[1 - prop_essential] + rho * prop_essential,
              (1 - rho) * (1 - prop_essential),
              (1 - rho) * (prop_essential),
              1 - (1 - rho) * (1 - prop_essential) - rho])
C = np.reshape(C, [num_groups, num_groups])

# Convert initial state into 1-dimensional array

t_span = [0, max_days]
t_eval = np.arange(max_days)

social_distancing_time = lockdown_t
args = parameters(R_0 = R_0,
                 N = N,  # total population
                 C = C,  # Mixing matrix
                 social_distancing_time = social_distancing_time,  # when
                 theta = theta,  # How effective is
                 model = model,  # Who social
                 proportion_essential = prop_essential,  #
                 rho = rho,  # record changes from
                 proportionate mixing

45
max_days = max_days, # bookkeeping of
how many days simulated
num_groups = num_groups, # bookkeeping of
how many groups
compartment_names = compartment_names, # bookkeeping of
how many compartments
t_inc = 4.6, # !time from E to I: exposed to infected
t_AR = 5, # !time from IA to R: infected and
asymptomatic to recovered
t_IR = 5, # !time from IR to R: infected, symptomatic
and will recover to recovered
t_IH = 5, # !time from IH to H: infected and will need
hospitalization to hospitalization
t_HR = 8, # !time from HR to R: hospitalized and will
recover to recovered
t_HC = 6, # !time from HC to C: hospitalization to
critical care
t_CD = 10, # time from CD to D: critical care and will
die to death
t_CL = 7, # time from CR to L: critical care and will
recover to post-critical care hospitalization
t_LR = 3, # time from L to R: post-critical care
hospitalization to recovered
p_IA = 1/3, # Proportions of infections that are
asymptomatic
p_IH = 0.066, # Proportion of symptomatic infections that
require hospitalizations, conditional on not being asymptomatic
p_HC = 0.3, # Proportion of hospitalizations that require
critical care
p_CD = 0.5, # Proportion of critical cases that are fatal
change_in_p_IH = 1, # How much is the probability of
hospitalization increased in OLD
change_in_p_IA = 1, # How much is the probability of
asymptomatic increased in OLD
adjust_beta_hosp = adjust_beta_hosp) # change the beta for
within hospital interactions relative to beta between I and S

single_population = np.zeros(len(compartment_names))
single_population[1] = n_exposed
	single_population[2] = pred_infected*args.p_IA
single_population[0] = N - sum(single_population)
initial_state = [(1 - prop_essential) * single_population,
                prop_essential * single_population]

# Convert initial state into 1-dimensional array
initial_state = [params for group in initial_state for params in group]

sol = solve_ivp(lambda t,y: SEIR_HCD_model(t,y,args), t_span, initial_state,
                t_eval=t_eval,method = 'Radau')
pred_all = np.maximum(sol.y, 0)
pred_all = get_compartment_counts(sol, num_groups)

min_loss = np.inf
best_start = 0

for i in range(int(lockdown_t)):
    begin_time = i
    n_train = len(n_deaths)
    # Get Predicted Deaths and Hospitalization from days that we want to fit
    pred_cases, pred_hosp, pred_deaths = pred_all[0], pred_all[1],
    pred_all[2]
    pred_deaths_eval = pred_deaths[begin_time: n_train + begin_time]
    # Use only if we want to also fit to the hospitalization curve (only useful for NYC)
    if fit_hospital == True:
        n_hospitalized = data['cumulative_hospitalized']
        pred_hosp_eval = pred_hosp[begin_time: n_train + begin_time]
        n_hospitalized_diffs = np.ediff1d(n_hospitalized,
                                          to_begin=n_hospitalized[0])[1:]
        pred_hosp_eval_diffs = np.ediff1d(pred_hosp_eval,
                                           to_begin=pred_hosp_eval[0])[1:]
        hosp_rmse = np.sqrt(mean_squared_error(n_hospitalized_diffs,
                                                pred_hosp_eval_diffs))

        n_deaths_diffs = np.ediff1d(n_deaths, to_begin=n_deaths[0])[1:]
        pred_deaths_eval_diffs = np.ediff1d(pred_deaths_eval,
                                             to_begin=pred_deaths_eval[0])[1:]
        deaths_rmse = np.sqrt(mean_squared_error(n_deaths_diffs,
                                                  pred_deaths_eval_diffs))

        if fit_hospital == True:
            loss = hosp_rmse
        else:
            loss = deaths_rmse
if loss < min_loss:
    min_loss = loss
    best_start = i
    best_pred_cases, best_pred_hosp, best_pred_deaths = pred_cases,
    pred_hosp, pred_deaths

if error == True:
    return min_loss
else:
    return min_loss, best_start, best_pred_cases[best_start:],
    best_pred_hosp[best_start:], best_pred_deaths[best_start:]

We use a hierarchical optimization approach. First, we use Latin Hypercube Sampling to generate random starting points for the parameters to infer. Next, we use Nelder-Mead optimization for the intial guesses to obtain a good starting point for a final standard descent optimization with the L-BFGS algorithm. This process is repeated 5 times and the parameters with the minimal loss are taken as the final value.

def fit_SEIR_model(data, model, N=8.1e6, fit_hospital=False):
    # decide how many days to forcast
    n_forecast = 250

    min_loss = np.inf
    best_parameters = None

    # Model, Initial values, and bounds on parameters
    print(model)

    # R_0, theta, I0
    x0 = [1, 0, 0, 0]

    # Loop over potential times for lockdown
    for i in [50]:#np.arange(25,75):
        for _ in range(5):
            print('t',i)

            # bounds on R_0, theta
            bounds = (((1, 10),(0, 1),(30,80),(0,0))
            mm = len(x0)

            simplex = lhs(mm,(mm+1), 'center')
            for ii,(minv,maxv) in enumerate(bounds):
                simplex[:,ii] = simplex[:,ii]*(maxv-minv)+minv
```python
print(simplex)

bounds = ((1, 10),(0, 1),(30,80),(0,0))
Find the optimal set of parameters given model and parameter values and bounds
res = minimize(fun = SEIR_model_loss,
 x0 = x0,
 method = 'Nelder-Mead',
 options = {'initial_simplex':simplex},
 args=(data, n_forecast, model, i, 0, N, fit_hospital))

res = minimize(fun = SEIR_model_loss,
 x0 = res.x,
 bounds = bounds,
 args=(data, n_forecast, model, i, 0, N, fit_hospital))

R_0, theta, lockdown_t = res.x[0:3]

Simulate data with given parameters and returns outcomes: error, predicted cases, predicted deaths, and predicted deaths j in the best start day (how many days since the first infection until the first case in NYC data)
err, j, pred_cases, pred_hosp, pred_deaths = SEIR_model_loss(res.x, data=data, n_forecast=n_forecast, model=model, lockdown_t=i, start_t=0, error=False, N=N, fit_hospital=fit_hospital)

Print the best parameters for a given lockdown day
print('\t\t', j, R_0, theta, err)

If this new set of parameters is the best one, save it
if err < min_loss:
 start_t = j
 lockdown_t = i
 best_parameters = res.x
 min_loss = err

R_0, theta = best_parameters[0:2]
estimate_text = '\tR_0 = {}\n\theta = {}\n\text{lockdown_time} = {}\n\text{start_time} = {}
'.format(round(R_0,2), round(theta,3), round(lockdown_t,1), round(start_t,1))
print(estimate_text)
```

err, start_t, pred_cases, pred_hosp, pred_deaths = SEIR_model_loss(best_parameters,
data=data,
n_forecast=n_forecast,
model=model,
lockdown_t=lockdown_t,
start_t=start_t,
error=False, N=N, fit_hospital=fit_hospital)

# Concatenate actual and predicted values into one dataframe
# Get dates relating actual data to predicted data
n = len(pred_cases)
dates_all = [str(datetime.strptime(data['DATE_OF_INTEREST'].astype(str)[0], '%Y-%m-%d') + timedelta(days = ii))[0:10] for ii in range(n)]
predictions = pd.DataFrame({'ConfirmedCases_pred': pred_cases, 'Fatalities_pred': pred_deaths, 'Hospitalized_pred': pred_hosp}, index = dates_all)

actuals = data[['DATE_OF_INTEREST', 'cumulative_cases', 'cumulative_deaths']]
if fit_hospital == True:
    actuals = data[['DATE_OF_INTEREST', 'cumulative_cases', 'cumulative_deaths', 'cumulative_hospitalized']]
actuals.DATE_OF_INTEREST = actuals.DATE_OF_INTEREST.astype(str)
actuals.set_index('DATE_OF_INTEREST', inplace=True)
plot_df = pd.merge(predictions, actuals, how='left', left_index=True, right_index=True)

return((R_0, theta, lockdown_t, start_t), plot_df)

# Here we are only fitting the 'No Structure' model. However, other valid models can be inserted into the list below
models = ['No Structure']
fitting_results_nyc = {}
fitting_results_seattle = {}
fitting_results_chicago = {}

for model in models:
    param_estimate, plot_df = fit_SEIR_model(nyc_cases, model)
    fitting_results_nyc[model] = (param_estimate, plot_df)
for model in models:
    param_estimate, plot_df = fit_SEIR_model(seattle_cases, model, N=2.2e6)
    fitting_results_seattle[model] = (param_estimate, plot_df)

for model in models:
    param_estimate, plot_df = fit_SEIR_model(chicago_cases, model, N=5e6)
    fitting_results_chicago[model] = (param_estimate, plot_df)

# The function below can be used to display the predicted and actual death curves for a given city/location
update_font_size(10,rcParams = mpl.rcParams)
import matplotlib.dates as mdates
from datetime import datetime, date
def plot_model_fits(fitting_results: dict, location, fit_hospital = False):
    models = list(fitting_results.keys())
    param_estimate = fitting_results['No Structure'][0]
    plot_df = fitting_results['No Structure'][1]

    plot_df['DATE_OF_INTEREST'] = plot_df.index
    plot_df['DATE_OF_INTEREST'] = pd.to_datetime(plot_df['DATE_OF_INTEREST'])

    fig, ax = plt.subplots(figsize=(12, 8))
    plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
    plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=10))
    if fit_hospital == False:
        plt.plot(plot_df.DATE_OF_INTEREST,plot_df.Fatalities_pred.values,color='blue',linestyle='--', linewidth=1.5, label='Fatalities (pred)')
        plt.plot(plot_df.DATE_OF_INTEREST,plot_df.cumulative_deaths.values,color='red', label='Fatalities (actual)',ls='-', linewidth=3)
    else:
        plt.plot(plot_df.DATE_OF_INTEREST,plot_df.Hospitalized_pred.values,color='blue',linestyle='--', linewidth=1.5, label='Hospitalizations (pred)')
        plt.plot(plot_df.DATE_OF_INTEREST,plot_df.cumulative_hospitalized.values, color='orange', label='Hospitalizations (actual)',ls='-',linewidth=3)
    fig.suptitle('Location: ' + location, fontsize=20)
    plt.xlabel('Date', fontsize=12)
    plt.ylabel('Number of Individuals', fontsize=12)
    plt.legend(loc='lower right')
    plt.xlim([date(2020, 3, 1), date(2020, 6, 1)])
    plt.yscale('log')

# print(param_estimate)
R_0,theta,lockdown_t,start_t = param_estimate
### Location: Seattle

\[
R_0 = 2.2, \theta = 0.376; \text{start} = 58, \text{lockdown} = 44.802
\]
Location: Chicago

$R_0 = 3.54, \theta = 0.302$
$s_\text{start} = 42, s_\text{lockdown} = 5.0$

Number of Individuals


Legend:
- Fatalities (pred)
- Fatalities (actual)
In the plots above, the observed number of deaths is shown in red and the predictions from a model with no structure in blue. As can be seen, a good fit and plausible parameter estimates are obtained for data from Chicago and Seattle. A reasonable fit is also seen for New York City, but in this case, parameter estimates are not so sensible (notably \( \theta = 0 \)), possibly because the data are less reliable (see above). Given these possible issues, and the fact that New York City also provides hospitalization counts, we instead explored fitting our model to the cumulative hospitalizations for this case.

```python
models = ['No Structure']
fitting_results_hosp_nyc = {}
#nyc_hosp_cases = nyc_cases[nyc_cases['DATE_OF_INTEREST'] > '3/11/2020']
#nyc_hosp_cases.reset_index(drop=True, inplace=True)

for model in models:
 param_estimate, plot_df = fit_SEIR_model(nyc_cases, model, fit_hospital=True)
 fitting_results_hosp_nyc[model] = (param_estimate, plot_df)
```

| No Structure
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
</tr>
<tr>
<td>[ 1.9 0.1 35. 0. ]</td>
</tr>
<tr>
<td>[ 9.1 0.5 55. 0. ]</td>
</tr>
<tr>
<td>[ 7.3 0.7 65. 0. ]</td>
</tr>
</tbody>
</table>
```python
R_0 = 3.14
theta = 0.508
lockdown_time = 72.7
start_time = 54

plot_model_fits(fitting_results_hosp_nyc, "NYC", fit_hospital=True)
```
Here, the parameter estimates are perhaps more sensible.

1.0.5 Parameterizing $\beta_{\text{hosp}}$

Under the healthcare model, we allow infected hospital patients to infect susceptible healthcare workers. We parameterize the interaction term of this additional route of infections as $\beta_{\text{hosp}} = cf\beta_T$ where $c$ is a parameter. We choose the value of $c$ based on $\kappa$, the resulting relative risk of a nEW infecting a healthcare worker vs infecting another nEW. The code below calculated the relationship between $\kappa$, the relative risk to healthcare workers, and the coefficient $c$ of $\beta_{\text{hosp}}$

```python
fig = plt.figure(figsize=(10,7))
labels = ['Proportionate Mixing', 'Elevated in-group mixing', 'No Between Group Mixing']
colors = ['black', 'r', 'blue']
update_font_size(15)

prop_essential = 0.05
x_values = np.linspace(0,20,10000)
p = args_default
```

avg_time_critical = (1 - p.p_CD) * (p.t_CL + p.t_LR) + p.p_CD * (p.t_CD)

avg_time_hospital = (1 - p.p_HC) * p.t_HR + p.p_HC * (p.t_HC + avg_time_critical)

avg_time_hospital = (1 - p.p_IA) * p.p_IH * avg_time_hospital

for rho in [1,0.5,0]:
    G = (((1 - rho) + x_values * avg_time_hospital) / (avg_time_infectious)) * (1-prop_essential)
    H = 1 - (1 - rho) * prop_essential
    plt.plot(G/H,x_values,label=labels.pop(),color=colors.pop())
    plt.ylabel(r'c')
    plt.xlabel(r'$\kappa$: Relative risk to healthcare workers')
    plt.legend()

print(x_values[np.where(np.abs(G/H-1.5) == min(np.abs(G/H-1.5)))]
print(max(G/H))
plt.vlines([1.5],ymin = 0, ymax = max(x_values),color=[0.2]*3+[1],ls=':')

5.46254625
2.8304

[52]: <matplotlib.collections.LineCollection at 0x1a28ecb9d0>
The above figure shows that the coefficient $c$ increases linearly with $\kappa$ under different values of $\rho$. This is because higher rates of infection between patients and healthcare workers cause a greater rate of infection in hospital workers compared to nEWs.

Including this additional route of infections also increase $R_0$ while decreasing the doubling time. However, for the parameters we consider, the figure below demonstrates that this effect is small.

```python
[53]:
prop_essential = 0.05
R_0 = R0_from_doubling_time(args_default,3)

get new R_0 including within hospital infections
r0 = R_0 + avg_time_hospital * x_values * R_0/avg_time_infectious * prop_essential

get kappa from beta_hosp coefficients
rho = 0.5
G = ((1 - rho) + x_values * avg_time_hospital/avg_time_infectious)*(1-prop_essential)
H = 1 - (1 - rho) * prop_essential
GH = G/H

update_font_size(15)

plot increased R0
fig = plt.figure(figsize=(10,7))
ax_color = [0,0.3,0.5,1]
plt.plot(G/H,r0,linewidth=2.5,color=ax_color)
plt.ylabel(r'R_0',color = ax_color)
plt.xlabel('Relative risk to healthcare workers')
ax = plt.gca()
ax.spines['left'].set_color(ax_color)
ax.tick_params(axis='y', colors=ax_color)

plot decreased doubling time
ax1 = ax.twinx()
plt.sca(ax1)
ax1_color = [0.8,0,0,1]
d = (args_default.t_inc + avg_time_infectious + avg_time_hospital * prop_essential * x_values) * np.log(2) / (r0 - 1)
plt.plot(G/H,d,linewidth = 2.5,color=ax1_color)
ax1.spines['right'].set_color(ax1_color)
ax1.tick_params(axis='y', colors=ax1_color)
ax1.set_ylabel('Doubling Time',color=ax1_color)
```

[53]: Text(0, 0.5, 'Doubling Time')
As the risk to healthcare workers increases from 0 to 2.25, the changes to $R_0$ and the doubling time are only about 10% of their original values. The code below calculates the effects of changing $\kappa$ on different model outcomes.

```python
[54]: def vary_kappa_hosp(theta_values, healthcare_model, t_measure = 100,
 models = ['No Structure'],
 max_days = 500, R_0=3.2, I0=10,
 f = 0.05, rho = 0,
 model_dependent_f = {'No Structure': 0.05},
 model_dependent_rho = {'No Structure': 0},
 t_lockdown = 50, adjust_beta_hosp = [1]):

 results = lambda s: (sum(s[1,1:,100]),
 sum(s[1,1:,-1]),
 sum(s[0,1:,11]))

 solution_results_all = {}
 comparison_results_all = {}

 for theta in theta_values:
 solution_results = {}
 for index, gamma in enumerate(adjust_beta_hosp):
 solution, p = run_model(theta = theta,
 R_0 = R_0,
 t_measure = t_measure,
 max_days = max_days,
 models = models,
 t_lockdown = t_lockdown,
 model_dependent_f = model_dependent_f,
 model_dependent_rho = model_dependent_rho,
 f = f,
 rho = rho,
 gamma = gamma)

 solution_results[index] = solution

 solution_results_all[theta] = solution_results

 for key in solution_results_all:
 for i in range(len(solution_results_all[key])):
 comparison_results_all[i][key] = solution_results_all[key][i]

 return comparison_results_all
```

As the risk to healthcare workers increases from 0 to 2.25, the changes to $R_0$ and the doubling time are only about 10% of their original values. The code below calculates the effects of changing $\kappa$ on different model outcomes.
solution_matrix = np.reshape(solution.y,[p.num_groups,len(p.
-compartment_names),p.max_days])

avg_solution = (solution_matrix[0,:,::]+solution_matrix[1,:,::])/8e6

solution_matrix[0,:,::] = solution_matrix[0,:,::]/(8e6*(1-f))
solution_matrix[1,:,::] = solution_matrix[1,:,::]/(8e6*f)
R_effective, Betas, gg = get_R_effective(solution_matrix,p)

solution_results[gamma] = results(solution_matrix)

comparison_results = {}
for index,model in enumerate(models):
    f1 = model_dependent_f[model]
    rho1 = model_dependent_rho[model]

    solution,p = run_model(theta = theta,
        R_0 = R_0,
        t_lockdown = t_lockdown,
        model = model,
        n_infected = I0,
        n_exposed = 0,
        prop_essential = f1,
        max_days = max_days,
        rho = rho1,
        adjust_beta_hosp = 0,
        doubling_time = 3)

    solution_matrix = np.reshape(solution.y,[p.num_groups,len(p.
-compartment_names),p.max_days])

    avg_solution = (solution_matrix[0,:,::]+solution_matrix[1,:,::])/8e6
    solution_matrix[0,:,::] = solution_matrix[0,:,::]/(8e6*(1-f))
solution_matrix[1,:,::] = solution_matrix[1,:,::]/(8e6*f)
comparison_results[model] = results(solution_matrix)

comparison_results_all[theta] = comparison_results
solution_results_all[theta] = solution_results

return solution_results_all, comparison_results_all

# Assign row and column labels for the plots of the effective R over time
def assign_row_label_varyKappa(ax, text, pad = 5, xy = (0,0.5)):
    ax.annotate(text + '\n', xy=xy, xytext=(-ax.yaxis.labelpad - pad, 0),
                xycoords=ax.yaxis.label, textcoords='offset points',
                size='large', ha='center', va='center', rotation=90)

# Label is the value of R_effective
def assign_column_label_varyKappa(ax, index, pad = 5, xy = (0.5,1)):
    if index == 0:
        label = 'Prevalence in EWs after 100 days'
    elif index == 1:
        label = 'Prevalence in EWs after max days'
    elif index == 2:
        label = 'Prevalence in nEWs after max days'
    pad = 5 # in points
    ax.annotate(label + '\n', xy=xy, xytext=(0, pad),
                xycoords='axes fraction', textcoords='offset points',
                size='large', ha='center', va='baseline')

def plot_vary_kappa(solution_results_all, comparison_results_all, linewidth = 4,
                     font_size = 30, figsize = (40,40)):
    ls_styles = {
        'No Structure':('-',[0,0,0,0.5]),
        'Cashier':(':',[0,0,1,1]),
        'Healthcare':('--','r'),
        'USPS':('--','g'),
        'Healthcare_Sigmoid':('--','purple')
    }
    G = lambda x_values: ((1 - rho) + x_values * avg_time_hospital/
                          (avg_time_infectious)) * (1 - prop_essential)
    H = 1 - (1 - rho) * prop_essential
    kappa = lambda x_values: G(x_values) / H

    update_font_size(font_size, rcParams = mpl.rcParams)
    fig, axes_all = plt.subplots(ncols = 3, nrows = len(solution_results_all.
                                  keys()), figsize=(50,10*len(solution_results_all.
                                          keys())), sharex=True, sharey=True)

    ...
for i,((theta,solution_results),(theta,comparison_results)) in enumerate(zip(solution_results_all.items(),comparison_results_all.items())):
    for j,ax in enumerate(axes_all[i]):
        x_values = np.sort(list(solution_results.keys()))
        y_values = np.array([solution_results[key][j] for key in x_values])
        ax.plot(kappa(x_values),y_values,linewidth = linewidth,color='r')

        for model,model_values in comparison_results.items():
            ls,color = ls_styles[model]
            ax.hlines(model_values[j],xmin = min(kappa(x_values)),xmax = max(kappa(x_values)),color= color,label=model,linewidth = linewidth)
            if model == 'No Structure':
                bar_height = model_values[j]*0.9
            if i == 0:
                assign_column_label_varyKappa(ax=ax,index = j)
            if j == 0:
                assign_row_label_varyKappa(ax=ax,text=r'$R_0 \theta =$' + '{:.3f}'.format(theta*R_0))

        plt.sca(ax)
        plt.xlabel(r'$\kappa$')
        plt.ylabel('Proportion Infected')

        plt.vlines(kappa(5.46254625),
                   ymin=bar_height,
                   ymax=max(max(y_values),max(list([jj[j] for jj in comparison_results.values()]))),
                   color = 'k',
                   ls = ':',
                   linewidth = linewidth)

    fig.tight_layout()
    # Tight_layout doesn't take these labels into account. We'll need
    # to make some room. These numbers are are manually tweaked.
    # You could automatically calculate them, but it's a pain.
    fig.subplots_adjust(left=0.15, top=0.85)
    plt.subplots_adjust(wspace=0.3)
    plt.subplots_adjust(hspace=0.3)
    plt.show()

[55]: R_0 = R0_from_doubling_time(args_default,3)
    keep_R0_constant = False
    global_method='Radau'
desired_Reff = np.array([0.5, 0.7, 0.9])

s_dict, c_dict = vary_kappa_hosp(theta_values = desired_Reff/R_0 ,
    adjust_beta_hosp = np.linspace(0, 20, 20),
    healthcare_model = 'Healthcare',
    max_days = 300, R_0=R_0, I0=20,
    t_lockdown = 59,
    rho = 0.5,
    models = ['No Structure', 'Cashier', 'USPS'],

    model_dependent_f = {'No Structure': 0.05,
        'Cashier': 0.05,
        'USPS': 0.05,
        'Healthcare': 0.05,
        'Healthcare_Sigmoid': 0.05},

    model_dependent_rho = {'No Structure': 0,
        'Cashier': 0,
        'Healthcare': 0,
        'USPS': 0.5,
        'Healthcare_Sigmoid': 0})

As $\kappa$ increases, so does the prevalence in healthcare workers and among nEWs. When $\kappa = 1$, the model reduces to the non-public facing worker model.
To run the code and notebook presented in this supplement, a Jupyter notebook can be downloaded from: https://github.com/zfuller5280/Covid-19_Modeling